Research and Teaching Associate position
Towards Self-Assembly-Induced Covalent-Organic Frameworks COF

From December 16, 2020 to January 15, 2021

Context

EnSuTe aims at bringing Green Hydrogen Generation from bio-inspired research to a higher technology readiness level (TRL1 to TRL4) addressing issues as the sustainability of the materials used, the design of the devices available and the consumed energy of the electrolyzer, that current existing technology presents.

Moreover, in a holistic approach, EnSuTe will gather together the technological research with a social dimension to tackle legal, economic and social topics to make GHG and use a real, sustainable energy solution for isolated and solidarity territories. These first studies in isolated communities will give a sight of the potential implementation in larger and complex territories.

Bio-inspiration will be the project’s guideline. At the technical level, integrating such concepts implies to take profit of the thousand-years-old evolution report of the animal and plant kingdom with their environment, around 3 inseparable major pillars:

1. chemical composition to lead to features,
2. molecular or macromolecular structure to create elementary building blocks, and finally
3. hierarchical architecture of materials combined to the processes of the elementary building blocks self-assembly, to promote and enhance properties of the living entities “devices” allowing one to favour their development and then Life diversity in one way or another.

Mission & main activities

In this project you will work on functional molecules & polymers as COF precursors and building blocks. You will work on the organic synthesis and characterization of organic molecules and macromolecular designs, their co-self-assembly in solution, and the assembly to form hierarchically structured COFs. The photo(electro) chemistry will be then studied and the modelling of their reactivities will be developed with another dedicated postdoc working on.

Position and assignments
The position has its focus on the synthesis and optimization of COF catalysts and their dimension, shape and morphology controls.

The successful candidate will contribute to the following tasks:

* Functional molecules & polymers as COF building blocks
* Self-Assembly-Induced COF (SAIC), a new concept inspired by polymerization process called PISA (Polymerization-Induced Self Assembly)
* Reactivity modelling of COFs based on their morphologies
* Photo(electro)catalytic tests

The position includes research and teaching duties (64h/year). The position will also include international travel to conferences and meetings with partners/collaborators.

Work conditions

The chosen candidate will be working with an inter-disciplinary supervisory team (IPREM (France)/MPG (Germany)) and benefit from a world-class programme.

Hosting laboratories:

PREM, UMR CNRS 5254, Université de Pau et des Pays de l’Adour

IPREM is a joint Research Unit CNRS/UPPA (UMR 5254) in France. IPREM has an extensive and highly competitive research program that comprises the development of fundamental knowledge in physical-chemistry, analytical chemistry and synthesis of functional/bio-inspired materials, in relation to conversion and electrochemical/chemical storage of renewable energies.

Max Planck Institute for Solid State Research in Stuttgart, Germany, is a hub for the synthesis and characterization of solids with a focus on quantum and energy materials. MPI-FKF provides world-class facilities dedicated to solid state synthesis, wet chemical synthesis, nanofabrication and materials characterization at the highest level. To this end, the institute hosts an impressive cluster of characterization facilities for seamless analysis of solids on the atomic and nanoscale.

EnSuITE research team: The challenges presented at EnSuITE are great, but the potential rewards are enormous. To work in this project, we will make use of advanced experimental techniques and knowledge of Prof. Bettina Lotsch (co-supervisor) (MPI-FKF, Nanochemistry department, Stuttgart, Germany) and Prof. Laurent Billon (supervisor) (Bio-inspired materials group: functionality & self-assembly at Université de Pau et des Pays de l’Adour/Energy & Environment solutions UPPA/E2S, France).
Localisation addresses:

IPREM, Université de Pau et des Pays de l’Adour, Pau, Nouvelle-Aquitaine, France

Max Planck Institute for Solid State Research, Stuttgart, Germany (2 short stays)

Starting period: March 2021 or as otherwise agreed.

Duration of the contract: 24 months (+ 18 months)

Gross salary: 2960 €/month (which includes extra gratification for teaching duties – 64h per year)

Funding: This position is funded by the project E2S UPPA (Energy Environment Solutions) which has a core scientific domain focused on Environment and Energy to meet challenges related to the energy transition, georesources, aquatic habitats and the environmental effects of natural and anthropogenic changes.

Requirements

Priority will be given to candidates holding a PhD degree in Chemistry as major, in the field of organic or polymer synthesis. A strong interest in conductive materials, materials characterization, as well as advanced organic and polymeric synthetic skills is desired. The candidate should be interested in the catalytic and electrochemical characterization of functional materials and their application for photo(electro)catalytic hydrogen evolution.

Extensive experience in experimental research in molecular and supramolecular chemistry, structure-property relationships, catalytic and electrochemical characterization of functional materials is desirable.

The ranking will also accord weight to the candidates’ assessed competence in their ability to interact and communicate effectively in a multi-disciplinary and multi-national research environment.

The applicant must be proficient in spoken and written English. French knowledge would be desirable, but is not mandatory.
ADDITIONAL QUALIFICATIONS:

The chosen candidate should have self-motivation and the ability to achieve goals independently as well as to contribute effectively to the team. He/she should have a strong motivation to pursue a career in a cross-disciplinary cutting-edge domain with mobility between Stuttgart and Pau.

Excellent communication skills and willingness to work in collaborative projects with multiple partners are desired. Furthermore, the candidate should be familiar with environmental, health and safety (EHS) requirements.

Selection process - evaluation criteria

Application file assessment: Selection committee

Candidates will first be selected based on their application file.

Those selected after this first step will then be interviewed, by teleconference/skype by the selection committee.

Application files will be evaluated based on the following criteria:

* Appropriate education and work/research in related fields.
* Candidate's motivation, knowledge, scientific maturity and curiosity.
* Emphasis will also be placed on personal skills.
* Candidate’s ability to present her/his work and results

Selections will be made regardless of gender, nationality, religion, ethnicity, and cultural background.

Application

Applications must be written in English and submitted as a single .pdf file.

Required documents:

* cover letter,
* CV
* PhD degree grade transcripts
* Copy of the candidate’s PhD thesis degree
* 2 Reference letters
Contact details of at least two people, from your work environment, who can be contacted for further reference

Send your application with the title “ENSUITE – COF application” to the following addresses:

laurent.billon@univ-pau.fr
laia.francesch@univ-pau.fr

The closing date for receipt of applications is January 15th, 2021, 17:00 Paris Time (CET or GMT+1)